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A Galerkin-collocation-type technique for solving numerically differential bound-
ary value problems was developed several years ago. Such a method is based on
a certain finite-dimensional matrix representation of the derivatived/dx obtained
through Lagrange’s interpolation. Recently, an extension to separable multivariate
problems has been given; in this context, the authors have found a matrix repre-
sentation of the quantum angular momentum, yielding the precise eigenvalues and
finite-dimensional vectors that coincide exactly with the spherical harmonics evalu-
ated at a certain set of points. The aim of this paper is to give additional properties
of such a matrix representation and to show how these findings can be applied to
obtain binding energies and eigenfunctions for the hydrogen atom. We consider
three cases: the Coulomb potential, the fine-structure splitting, and the hydrogen
atom in a uniform magnetic field. Since this last case is a nonseparable problem
in the coordinates, the method requires a modification that is introduced in this
paper. c© 2000 Academic Press

Key Words:hydrogen atom; eigenvalue problem; angular momentum; numeric
partial differentiation; boundary value problems.

1. INTRODUCTION

Recently, the authors have found a finite-dimensional version of the eigenproblem of
the quantum angular momentum that yields the exact eigenvalues and finite-dimensional
vectors coinciding exactly with the spherical harmonics evaluated at a certain set of points
[9]. The matrix associated to the square of the angular momentumL of a system described
by three classical degrees of freedom is obtained by using a certainN × N (N odd) matrix
representing an angular derivative in the space of trigonometric polynomials of degree at
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most(N − 1)/2 which has the generic form

Dt = QD̃t Q−1,

(D̃t )i j =

∑′ N

l=1
1
2 cot (ti − tl )

2 , i = j,

1
2csc(ti − t j )

2 , i 6= j,
Qi j = q′(ti )δi j , i, j = 1, . . . , N, (1)

whereq′(t) is the derivative of the trigonometric polynomialq(t)=5N
l=1 sin[(t − tl )/2],

and the set of nodest j is any set of different points of [−π, π ]. Hereafter, a prime appended
to a sum sign excludes the divergent term.

The finite-dimensional representation ofL2 is given by

L2 = −[D2
θ + cotΘDθ + sin−2 ΘD2

ϕ

]
, (2)

where

Dθ = 1M ⊗ Dθ , Dϕ = Dϕ ⊗ 1K , Θ = 1M ⊗2. (3)

Here, 1M and 1K are identity matrices of dimensionM andK , respectively; andDθ andDϕ

are matrix representations of the derivativesd/dθ andd/dϕ in the subspacesSθ andSϕ of
trigonometric polynomials of degrees at most (K − 1)/2 and (M − 1)/2, respectively.2 is
a diagonal matrix with entries(2) jk = θ j δ jk and the nodesθ j are restricted to be in [0, π ].
If M ≥ K , the eigenvalue problem of (2),

L2ys = λsys,

reproduces exactly the first (K + 1)2/4 eigenvalues and determines the corresponding spher-
ical harmonicsYm

l (θ, ϕ) at the nodes (θ j , ϕk), save for a constant factor, and ordered as

λs = l (l + 1),

where

s= l 2+ l +m+ 1, l = 0, 1, . . . , (K − 1)/2, m= −l , . . . , l .

The componentsyrs of ys are given by

yrs = clm Pm
l (θ j )e

imϕk ,

whereclm is a normalization constant and

r = j + (k− 1)K , j = 1, 2, . . . , K , k = 1, 2, . . . ,M.

In order to have a positive semidefinite matrixL2, the ϕ-nodes must be given byϕk=
−π + 2πk/M, k= 1, 2, . . . ,M , and theθ -nodes must satisfy the condition

K∑
l=1

′ cot
(θ j − θl )

2
= − cot(θ j ). (4)

It is also possible to combineDϕ , as given by (1), and the matrix representation ofd/dθ
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given in [4] into (3) to yield equivalent results [9]. The way in which the matrix (1) is
obtained is similar to the way in which the finite-dimensional matrix representationDx

of d/dx, which has been used to solve two-point boundary value problems [2, 5, 8], was
obtained. Such a matrix is given by

Dx = PD̃x P−1,

(D̃x)i j =

∑′ N

l=1
1

(xi − xl )
, i = j,

1
(xi − xj )

, i 6= j,
Pi j = p′(xi )δi j , i, j = 1, 2, . . . , N. (5)

Here,p(x)=5N
l=1(x − xl ), and the set of nodesxj are chosen by imposing the condition

N∑
l=1

′ 1

(xj − xl )
= −γ

′(xj )

γ (xj )
, j = 1, 2, . . . , N, (6)

whereγ (x) is a function defined by the boundary conditions and the differential equation
(see [7, 8]).

The purpose of this paper is to give an application of the finite-dimensional representation
of the angular momentum and the angular derivatives. We incorporate such matrices in
the numerical technique used to solve multidimensional boundary value problems [6] and
choose as trial examples the following eigenvalue problems: the hydrogen atom, the fine-
structure splitting, and the hydrogen atom in a uniform magnetic field. Since the last case
is a nonseparable problem in the coordinates for an intense field, i.e., the solution cannot
be written as a (tensor) product of univariate functions, a modification of the method will
be introduced.

2. THE HYDROGEN ATOM

In this and in the next sections, the units of length and energy will be taken as the
Bohr radiusa0= -h2/mee2= 5.3× 10−9 cm and two times a Rydbergmee4/-h2= 27.2 eV,
respectively.

To obtain an appropriate matrix form of the Schr¨odinger equation for the electron in a
Coulomb field[

− 1

2r 2

∂

∂r

(
r 2 ∂

∂r

)
+ 1

2r 2
L2− 1

r

]
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ), (7)

it is necessary to extract fromψ(r, θ, ϕ) the singular behavior at the endpoints of the
intervals (see [2, 7, 8]). This can be done in part through the change of variable

ψ(r, θ, ϕ) = ψ∞(r, θ, ϕ) f (r, θ, ϕ), (8)

whereψ∞(r, θ, ϕ) is the solution of (7) for bound states whenr →∞, given by

ψ∞(r, θ, ϕ) = e−
√

2εr . (9)

The unknown energy is written here as−ε because it will be used in the numerical calcu-
lations as a trial parameter.
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The substitution of (8) and (9) in (7) yields[
−1

2

∂2

∂r 2
−
(

1

r
−
√

2ε

)
∂

∂r
+ 1

2r 2
L2−

(
1−√2ε

r

)
− ε
]

f (r, θ, ϕ) = E f (r, θ, ϕ). (10)

Since f (r, θ, ϕ) can be written as a product of univariate functions ofr, θ , andϕ, we can
project each of these functions on subspaces of polynomials to yield finite-dimensional
matrix representations of the partial derivatives [9]. Thus, to the projection of the angular
variables described above, we add the projection of the radial function on a subspace of
polynomialsSr depending onr of degree at mostN− 1. This yields a tensor projection
spaceS= Sϕ ⊗ Sθ ⊗ Sr of dimensionÑ=M K N in which the matrix form of (10) is given
by

Hf s = Esfs, s= 1, 2, . . . , Ñ, (11)

where the discretized Hamiltonian is given by

H = −1

2
D2

r − (r−1−
√

2ε1)Dr + 1

2
r−2L2− (1−

√
2ε)r−1− ε1. (12)

Here,Dr is the tensor product

Dr = 1M ⊗ 1K ⊗ Dr ,

whereDr is the representation of the radial derivative having the structure of (5), the diagonal
matrix r is defined by

r = 1M ⊗ 1K ⊗ R,

and the nonzero entries ofRare the radial nodesr j , j = 1, 2, . . . , N. L2 is given by (2), and
1 is the identity matrix of dimensioñN. Since the part off (r, θ, ϕ) depending onr consists
of polynomials (Laguerre polynomials multiplied by a power ofr ) and the dimension ofDr

is N, one would expect a set ofN times(K + 1)2/4 eigenvectorsfs coinciding exactly with
the first eigenfunctions of the hydrogen atom evaluated at the nodes (providedM ≥ K ).
However, due to the fact that the argument of the radial functions depends on the principal
quantum numbern, which is related to the index defining the degreenL of certain Laguerre
polynomial and to the azimuthal quantum numberl throughn= nL + l + 1, the projection
of the radial part of (12) for thes-states onSr , i.e., the eigenvalue equation

Hr f j = Ej f j , j = 1, 2, . . . , N,

with

Hr = −1

2
D2

r − (R−1−
√

2ε1N)Dr − (1−
√

2ε)R−1− ε1N, (13)

will reproduce only one exact eigenvalue: the one corresponding to the case in which
ε=−E= 1/(2n2) for somen≤ N. As a consequence, the number of exact energies yielded
by (11) is given by the known formula

n−1∑
l=0

(2l + 1) = n2,
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for somen≤ nmax, providedε= 1/(2n2). SinceDr yields exact derivatives of polynomials of
degree at mostN−1 and the radial part off (r, θ, ϕ) is a polynomial of degreen−1= nL + l ,
we have again thatnmax= N, and therefore, the method yields the correct number of exact
eigenvalues corresponding to the multiplet defined byn providedn≤ N and M ≥ K ≥
2N− 1. It is necessary, however, to choose the radial nodes in such a form that [7]

N∑
l=1

′ 1

(r j − rl )
=
√

2ε − 1

r j
, j = 1, 2, . . . , N, (14)

in order to look for a well-behaved solution atr = 0. Therefore these points coincide with
theN zeros of the Laguerre polynomialL(1)N (2

√
2εr ) and yield a positive definite matrixr−1

in (12) and a Hermitian matrixHr (save for a similarity transformation). The first assertion
is obvious, and the latter can be shown by setting the main diagonal ofDr apart by writing
Dr = P DP−1+ d, djk = (Dr ) j j δ jk , and using (14) to obtain

Hr = P

[
1

2
(−D2+ d D− Dd + d2)+ V

]
P−1 = P

(
1

2
Dt

r Dr + V

)
P−1,

whereV is the diagonal matrix

V = −(1−
√

2ε)R−1− ε1N .

Therefore, the radial partHr of (12) also has real eigenvalues because

Hr = 1M ⊗ 1K ⊗ Hr .

However, because of the arbitrariness of theθ -nodes, some complex eigenvalues can be
found in the spectrum of (11). To exclude them we can fix theθ -nodes through the condi-
tion (4) to give a positive semidefinite matrixL2 (also save for a similarity transformation)
[9]. It is worth to be noticed that such similarity transformations are not essential for an
eigenproblem like (11) since the similarity matrices can be collected into aÑ× Ñ diagonal
matrixS to write (11) in the form

HH gs = Esgs, s= 1, 2, . . . , Ñ, (15)

with HH Hermitian andgs=S−1fs.
Summarizing, we have found a nonrectangular grid on whichH becomes a Hermitian ma-

trix. Explicitly, if we choose the nodes (ri , θ j , ϕk) in such a form that the setri , i = 1, . . . , N,
satisfies (14), the setθ j , j = 1, . . . , K , satisfies (4), andϕk= −π + 2πk/M, k= 1, . . . ,M ,
the projection of the Schr¨odinger equation onSbecomes Eq. (11), whereH is a Hermitian
matrix given by (12). The spectrum of this matrix contains necessarily the exact bind-
ing energies of only one multiplet of the hydrogen atom, to, say thenth, providedn≤ N
(N ≥ 2),M ≥ K ≥ 2N − 1, andε= 1/(2n2). Since the matrices representing the partial
differential operators constructed with these nodes yield exact values for polynomials of
the form

ρ(r )Pm
l (θ)

imϕ
e ,

where ρ(r ) is a polynomial of degree at mostN− 1, l = 0, 1, . . . , (K − 1)/2, and
m=−l , . . . , l , the eigenfunctions of the multiplet divided bye−

√
2εr [cf. (8)–(9)] are also

determined exactly at the nodes save for a constant factor.
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To do a numerical calculation it is necessary to choose first an indexn, defining thus
a multiplet and the parameterε, and then the number of radial and angular nodesN, K ,
andM according to the relations already given. In addition to the exact eigenvalues of the
nth multiplet, one can find in the spectrum of (11) eigenvalues approximating the energy of
other multiplets defined by different indexesn′ 6= n, n′ ≤ N. As expected, these eigenvalues
converge numerically to their exact values of the first (K−1)/2 multiplets (M ≥ K ≥ 2N−1)
asN grows.

It is noticing the existence of zero and positive eigenvalues in the spectrum of (11). In
fact, the number of nonnegative eigenvalues is greater than the number of negative ones,
but the numerical study of such eigenvalues is beyond the scope of this paper.

We show now some numerical results obtained through the diagonalization of (11) by
standard double precision MATLAB functions using a personal computer. In Table I the
negative eigenvalues of (11) withN= 4 andK =M = 7 are shown forn= 1, 2, 3, 4 (in
the last two cases only a part of them are displayed). In each column we find exact and
approximated values for the binding energies of the hydrogen atom; the exact ones are those

TABLE I

Negative Eigenvalues of Eq. (11) with H Given by (12) forN = 4,

K = M = 7, andεn = 1/(2n2) with n = 1, . . . , N

Note. The two rightmost columns show only some of the eigenvalues. In each case,
the spectrum of (11) contains only one exact eigenvalue (counting the degeneracy) of
the hydrogen atom. In order to distinguish this exact energy (corresponding to thenth
multiplet), the value 1/

√−2Es is displayed.
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TABLE II

Convergence of Some Negative Eigenvalues of Eq. (11) with H Given by (12)

for K = M = 7 and ε = 1/2 to the Exact Energies of the First Three Multiplets

of the Hydrogen Atom (Displayed as 1/
√
−2Ej = j, j = 1, 2, 3) asN Grows

Note.Each column contains again one exact eigenvalue. Sinceε= 1/2, the exact energy
corresponds to the first value in each column.

corresponding to the multiplet defined by the indexn. In Table II we show the convergence
of the approximated eigenvalues to their exact values whenN grows, maintainingn, K ,
and M fixed (n= 1, K =M = 7). Sincen= 1 (ε= 1/2), the first value of each column
corresponds to the exact eigenvalue of the first multiplet. The choice forK andM yields
convergence only for two other multiplets.

3. THE FINE STRUCTURE SPLITTING

We consider in this section the problem of a classical electron in a Coulomb field with
the inclusion of spin effects in order to show some additional facts of the finite-dimensional
representation of the angular momentum. We will apply our projection method to the
Hamiltonian of this problem as it is given in the frame of perturbation theory and compare
the eigenvalues of the discretized problem with the fine structure of the hydrogen atom.

3.1. Total Angular Momentum

We begin by giving the finite-dimensional representation of the total angular moment
EJ= EL + ES, which, according to the introduced method, is the 2Ñ × 2Ñ vector matrix

EJ = 12⊗ EL + ES⊗ 1Ñ, (16)

whereÑ=M K, EL is theÑ × Ñ vector matrix representing the angular momentum whose
square is given by (2), andES= Eσ/2 is the intrinsic angular momentum of the electron, given,
as is well-known, in terms of the Pauli matricesσx, σy, andσz. By using the expressions
for Lx, L y andLz in terms ofθ andϕ and their derivatives, the components ofEL can be
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TABLE III

Eigenvaluesλj of (18) Following the Sequenceλj = j( j + 1),

1/2≤ j≤ (K− 1)/2, for K = M = 3, 5, 7

Note.To distinguish them easily, the indexj = (−1+
√

1+ 4λ j )/2 is dis-
played. The digit between parentheses indicates the number of equal repeated
eigenvalues.

written as2

L x = i (sin8⊗ Dθ + cos8Dϕ ⊗ cot2),

L y = −i (cos8⊗ Dθ − sin8Dϕ ⊗ cot2), (17)

L z = −i Dϕ ⊗ 1K .

Here,8 is the diagonal matrix with entries (8) jk =ϕ j δ jk . These components and their
commutators can also be given in Cartesian coordinates, as is shown in the Appendix.
Thus,J2 takes the form

J2 = J2
x + J2

y + J2
z, (18)

where

Jx = 12⊗ L x + Sx ⊗ 1Ñ, Jy = 12⊗ L y + Sy ⊗ 1Ñ, Jz = 12⊗ L z+ Sz⊗ 1Ñ .

The spectrum of (18) contains eigenvalues agreeing up to 15 digits with the exact values
j ( j + 1), j = 1/2, 3/2, . . . , lmax− 1/2, lmax= (K − 1)/2,M ≥ K (M andK odd numbers
and-h= 1), as is shown in Table III for small values ofK =M . Note that the total num-
ber of states is given correctly. The eigenvalues that do not follow the sequencej ( j + 1)
and the correct count disappear as the value ofK =M is increased. Thus, the projection
scheme described at the beginning of this paper yields finite-dimensional representations
of the quantum angular operators that also work quite well for spinor eigenproblems where
the solution can be written in terms of products of trigonometric polynomials by certain
functions powered to half-integer numbers (the eigenspinor functions ofJz and J2). For
other cases, the method requires one to take into account the behavior of the solution
at the singularities of the differential equation or a further modification for nonseparable
problems.

2 Actually, the sum of the squares of these expressions gives a matrix (L ′)2 different fromL 2, as is shown in the
Appendix. Since the difference is essentially a projection matrix, the dimension of the linear space in which the
use of(L ′)2 yields exact results becomes smaller than the one corresponding to the use ofL 2. This difference can
be compensated by increasingM .
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3.2. The Perturbed Hamiltonian

To compute the fine-structure splitting of the energy levels of the hydrogen atom we take
the nonrelativistic reduction of the Hamiltonian

Hnr
op = H (0)

op + α2

[
1

2r 3
EL · ES− 1

2

(
H (0)

op + 1/r
)2+ hD

]
(19)

obtained by perturbation theory. Here, the units used are those of the previous section,
-h has been withdrawn fromEL and ES, andα= e2/(-hc) is the fine-structure constant. The
unperturbed HamiltonianH (0)

op is the one given in (7), andhD is the Darwin interaction.
The standard procedure computes the corrections to the energy levels by finding the matrix
elements of the perturbed Hamiltonian (19) in the basis of the mutually commuting operators
L2, S2, J2, andJz. We will find them instead through the projection of (19) in a polynomial
space and the diagonalization of its finite-dimensional matrix representation obtained in
this way.

The first point to address is the explicit form of the Darwin interaction to be projected.
The singular and non-Hermitian term

hD = − 1

4r 2

∂

∂r
(20)

is usually converted to the Hermitian form−(1/8)∇2(1/r )= (π/2)δ(Er ) through an integra-
tion by parts. In order to give a finite-dimensional matrix representation of (19), we need to
find, in particular, the discrete form of this Darwin term. Due to the difficulty of a numerical
treatment of the delta function we find it more convenient to treat the non-Hermitian Darwin
term (20) because it is easy to get the corresponding matrix form of (20), and numerical
evidence shows that such a matrix has real eigenvalues when the radial nodes satisfies (14).
Therefore, we will maintain (20) in (19) instead of the usual form−(1/8)∇2(1/r ).

On the other hand, the addition of the spin–orbit interaction introduces an irregular
singularity atr = 0, making it necessary to look for a change of variable that incorporates
this behavior in the solution instead of (9). However, because of the smallness ofα2, we
can keep the zeros ofL (1)N (2

√
2εr ) as the set of radial points even though this choice may

give a lower convergence rate for the eigenvalues of (19) since it does not take properly into
account the irregular singularity at the origin.

Thus, the change of variable (8) yields a new differential operator whose matrix form is

H′ = H0+ α
2

2

[
r−3EL · ES− (H0+ r−1

)2− 1

2
r−2(Dr −

√
2ε1)

]
, (21)

whereH0= 12 ⊗ H,H given by (12),r = 12N M ⊗ R,Dr = 12N M ⊗ Dr , 1 is the identity
matrix of dimension 2̃N, and EL · ES is given by

2EL · ES= σx ⊗ L x + σy ⊗ L y + σz⊗ L z.

The last term of (21) is the form that the Darwin interaction takes after the change of variable
(8). For numerical reasons and in order to identify the dependence of the eigenvalues on the
quantum numbersn, l , and j , we find it more convenient to diagonalize the one-dimensional
reduced version of (21)

H ′ = H0+ α
2

2

[
λSLR−3− (H0+ R−1)2− 1

2
R−2(Dr −

√
2ε1N)

]
, (22)
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TABLE IV

Fine Structure of the Hydrogen Atom

Note.The exact binding energies−Enl j of the Hamiltonian (19) are compared with those obtained
by the present method,−EN

nl j , for N= 50, 100, 800.

whereH0= Hr + l (l + 1)R−2/2, Hr is given by (13) andλSL take the valuel/2 if j = l +
1/2 or−(l + 1)/2 if j = l − 1/2, respectively. We display in Table IV the fine structure
obtained by the diagonalization of (22) for the first three values ofn. Again, we have used
standard MATLAB functions and a personal computer to do the computations. Since the
irregular singularity of the Hamiltonian has not been taken properly into account and the
Darwin term leads to numerical difficulties, it is necessary to take large values ofN, as
shown in Table IV, to attain an agreement of the approximated eigenvalues−EN

n0 j with
the exacts-states within 8–9 digits (2–3 significant digits of the fine-structure correction to
the Bohr energy levels), whereas forl 6= 0, the first 10–14 digits of the exact eigenvalues
of the Hamiltonian (19) are attained for the first value ofN (4–7 significant digits of the
fine-structure correction), indicating that the matrix representation of the Darwin term, as
expected, does not influence the states withl 6= 0. However, these eigenvalues do not show
convergence to the exact energies asN grows. This is due to the fact that the factorization
(8)–(9) does not take into account properly the behavior of the wave function at infinity
even though it seems to work forp3/2-states.

4. HYDROGEN ATOM IN A MAGNETIC FIELD

Let us consider the problem of a single electron bound by an atomic nucleus and a uniform
magnetic field of intensityB pointing in thez-direction. By using the same units as before
andB0=m2

ee3c/-h3= 2.35× 109 G as the unit of magnetic intensity such thatB=βB0 (β
is the dimensionless magnetic field) and the gauge whereAr = Aθ = 0, Aϕ = (Br sinθ)/2
in spherical coordinates, the Schr¨odinger equation takes the form[

−∇2− iβ
∂

∂ϕ
+ 1

4
β2r 2 sin2 θ − 2

r
− β

]
9 = 2E9, (23)

where the spin of the electron is antialigned with the magnetic field in order to compute the
ground state.

According to the present method we need to know the limit form9∞(r, θ, ϕ) of 9 for
bound states [cf. (8)]. To this, we write−E asε and take the limit form of this equation as
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r →∞ (assuming that the angular derivatives of the wave function are well-defined for all
values of the angles) and obtain[

∂2

∂r 2
+ iβ

∂

∂ϕ
− 1

4
β2r 2 sin2 θ + β

]
9∞ = 2ε9∞.

Theϕ-dependence of this equation can be factored to yield

9∞(r, θ, ϕ) = 0(3/4+ a)U (a, x)eimϕ, (24)

where

a = 2ε − β(1−m)

β sinθ
, x =

√
β sinθ r (25)

are the arguments of the Weber parabolic functionU (a, x) (see [1]). The gamma function
appearing in (24) is a normalization factor which makes9∞ independent ofθ at r = 0.

Since our interest is to compute the ground energies, we takem= 0 and substitute
9 =9∞ f in (23) to yield(

frr + 2
γr

γ
fr

)
+ 1

r 2

(
fθθ + 2

γθ

γ
fθ

)
+
[

1

r 2

(
uθθ
u
+ cotθ

uθ
u

)
+ 2

r

(
ur

u
+ 1

)
+ 2ε

]
f

+ 1

r 2 sin2 θ
fϕϕ + iβ fϕ = −2E f, (26)

where we have defined

γ (r, θ) = r
√

sinθ u(r, θ) (27)

andu(r, θ)=0(3/4+a)U (a, x), a andx given in (25) withm= 0.
We assume now thatf (r, θ, ϕ) can be approximated by a function of the formg(r, θ)h(ϕ),

whereh is a (trigonometric) polynomial inϕ andg is a polynomial in two variables (in-
deed, f has such a form forβ = 0). This assumption allows us to project the part of (26)
corresponding to theϕ-coordinate according to the lines already discussed. Besides, since
g(r, θ) yieldsN different trigonometric polynomials inθ whenr = r j , j = 1, 2, . . . , N, and
K different polynomials inr whenθ = θk, k= 1, 2, . . . , K , and the representation of the
partial derivatives are given by blocks, we can demand that thekth block of the matrix repre-
senting∂/∂r (in two variables) be constructed with thekth line of nodesr k

j , = 1, 2, . . . , N
according to the generic formula (5) and, similarly, that thej th (sparse) block of the matrix
representing∂/∂θ be constructed with the line of nodesθ j

k , k= 1, 2, . . . , K according to the
generic formula (1). Let us denote theseK N× K N matrices byD(2)

r andD(2)
θ , respectively.

Therefore, the representation of∂/∂r, ∂/∂θ , and∂/∂ϕ in (26) is given by

Dr = 1M ⊗ D(2)
r , Dθ = 1M ⊗ D(2)

θ , Dϕ = Dϕ ⊗ 1K N . (28)

The representation of a coefficient function in (26) becomes the tensor product of 1M with
the K N × K N diagonal matrix whose nonzero elements are the given function evaluated
at the nodes(r k

j , θ
j

k ), j = 1, 2, . . . , N, k= 1, 2, . . . , K , with j running faster thank.
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Thus, the discrete form of (26) is

[(
D2

r + 2gr Dr
)+ r−2

(
D2
θ + 2gθDθ

)+ r−2(uθθ + cotΘuθ )+ 2r−1(ur + 1)+ 2ε1

+ cD2
ϕ + iβDϕ

]
f = −2Ef, (29)

whereε is taken as a trial parameter;E andf are expected to be approximants to the exact
energy and eigenfunctions9 (the latter divided by9∞ and evaluated at the nodes);Dr ,
Dθ , andDϕ are given in (28);1 is theM K N × M K N identity matrix; andgr , r , gθ , uθθ ,
cot Θ, uθ , ur , andc are the diagonal matrices corresponding to the functions [cf. (27)]
γr /γ, r, γθ/γ, uθθ /u, cot θ, uθ /u, ur /u, and 1/(r 2 sin2 θ ), respectively. The nodes in the
ϕ-coordinate can be chosen to be the equidistant points

ϕl = −π + 2π l

M
, l = 1, 2, . . . ,M, (30)

in order to yield a similarity-transformed Hermitian matrix fori Dϕ (see [9]), so that it
remains to say how to choose the set of nodes (r k

j , θ
j

k ). To this end, we follow the ideas
given in [2]. Let us denote bydr anddθ the diagonal entries ofDr , andDθ , respectively. If
we impose the condition

dr = −gr , dθ = −gθ , (31)

then−D2
r − 2gr Dr and−D2

θ − 2gθDθ are positive semidefinite matrices (save for a simi-
larity transformation) and therefore, the eigenvalues of (29) are real. Written in detail, (31)
becomes the system of 2K N nonlinear equations

N∑
l=1

′ 1(
r k

j − r k
l

) + γr
(
r k

j , θ
j

k

)
γ
(
r k

j , θ
j

k

) = 0,

(32)
K∑

l=1

′1
2

cot

(
θ

j
k − θ j

l

)
2

+ γθ
(
r k

j , θ
j

k

)
γ
(
r k

j , θ
j

k

) = 0,

where j = 1, 2, . . . , N, k= 1, 2, . . . , K andγ (r, θ) is given by (27). Thus, ifβ andε are
given, the set of nodes (r k

j , θ
j

k ) can be found by solving (32).
Therefore, once we have determined the equations for the nodes, we can proceed to solve

the eigenproblem (29). To obtain an eigenvalue of (29) for a given valueβ ′ of parameterβ,
we follow a recursive procedure on the parametersβ andε consisting in the following steps.
We begin with the nodes yielding exact results forβ = 0 andε= 1/2. These nodes are used
as initial points to solve (32) withβ equal to some small increment. The new nodes are
used to construct and solve (29), obtaining a ground eigenvalue used as a value ofε in the
next calculation. We increment againβ and use the last set of nodes as initial points to find
a new set of nodes through (32) with the actual values ofβ andε. Solving again (29), we
find a newε, and so on. We stop the procedure whenβ =β ′, yielding thus an eigenvalue for
the ground state. Now we change the increment ofβ and the procedure is restarted. After
several trials we search for the stabilized digits in the eigenvalues obtained in this way. In
order to increase a bit the accuracy of results and admit even numbersK , one can use the
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TABLE V

Binding Energies−E0(M , K, N) of the Ground State of a Hydrogen Atom in

a Uniform Magnetic Field Computed According to the Present Method

Note.Only the first stable digits obtained through the recursive procedure described in Section 4
are shown. They are compared with the energies−E0 given in [10].

matrix representation ofd/dθ ,

Dθ = SD̄S−1,

D̄i j =

∑′ K

l=1 cot(θi − θl ), i = j,

cot(θi − θ j ), i 6= j,
Si j = δi j

K∏
l 6= j

sin(θ j − θl ),

given in [4]. In such a case,D(2)
θ will change accordingly [so does (28)] and the summand

of the second equation in (32) will change to cot (θ
j

k − θ j
l ). This is what we do to compute

the ground energies shown in Table V forN= 4, 6, 8; K = N; and M = 3. These values
are compared with those given in [10]; only the stable digits obtained through our recursive
procedure (described above) are shown. As can be seen, the present method yields acceptable
results only for smallβ. This is due to the fact that (24) becomes an oscillatory function
whena< 0 [or β >2ε; cf. Eq. (25)], producing that the solution of (32) cannot be found
with high precision forβ ≈ 1. ForβÀ 1, the solution of (32) is not unique, so another
function9∞ should be chosen.

We end this section by noting that this problem can also be solved numerically in two
variables (r andθ ) if we just ignore the dependence of the wave function on the coordinate
ϕ. However, we have preferred to show the results obtained by using three coordinates
instead of only two in order to give a complete numerical treatment of this problem, even
though numerical calculations in two variables yield the same results.

5. FINAL COMMENT

As we have shown, the method introduced in this paper can be easily implemented for
eigenproblems whose solution can be expressed in terms of products of polynomials, yield-
ing accurate eigenvalues and eigenfunctions (obtained from the eigenvectors through an
interpolation) for small values of the number of nodes used to construct the matrix repre-
sentations of the partial derivatives. However, this technique depends strongly on the correct
choice of the boundary function that defines the nodes, and so the selection of this func-
tion becomes crucial in order to attain convergence to exact solutions of more complicated
problems. The modification of the procedure introduced in the preceding section yields
acceptable results only for mildly nonseparable problems.
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APPENDIX

We show here the form that the algebra of the angular momentum takes in a finite-
dimensional linear space and explain why the sum of the squares of (17) becomes different
from (2). We will see that such a difference appears as an intrinsic characteristic of the
projection of the angular operators on a finite-dimensional space.

We begin by computing the commutators [Dϕ , sin8] and [Dϕ , cos8]. Using standard
trigonometric relations, we get that

Dϕ sin8 = sin8Dϕ + cos8−Uc (33)

and

Dϕ cos8 = cos8Dϕ − sin8+Us, (34)

whereUc andUs are projection matrices defined by

(Uc) jk = (−1) j+k cos

(
ϕ j + ϕk

2

)
, (Us) jk = (−1) j+k sin

(
ϕ j + ϕk

2

)
.

These matrices can be joined to form the complex matrixU =Uc+ iUs, which projects a
trigonometric polynomial

fm(ϕ) =
m∑

l=−m

cl e
il ϕ, m≤ mmax= (M − 1)/2,

on the components of higher degreemmax. To make this clear, let us take the polynomials
cosϕ fm(ϕ), sinϕ fm(ϕ), and calculate their derivatives by usingDϕ . Since the use ofDϕ

yields exact results at the nodes for polynomials of degree at mostmmax, the formulae

Dϕ sin8Fm = sin8DϕFm + cos8Fm Dϕ cos8Fm = cos8DϕFm − sin8Fm

must hold wheneverm≤mmax− 1. Here,Fm is the vector of values offm(ϕ j ). Therefore,
comparing these expressions with (33) and (34), we see that our assertion aboutU follows.

We calculate now the sumL2
x + L2

y. According to (17), we find that

−(L2
x + L2

y

) = D2
θ + (cos8Dϕ sin8− sin8Dϕ cos8)⊗ cot2Dθ

+ (cos8Dϕ cos8+ sin8Dϕ sin8) Dϕ ⊗ cot2⊗. (35)

With L ′2= L2
x + L2

y+ L2
y, the substitution of (33) and (34) in (35) gives

−L ′2 = −L2−U ′c ⊗ cot2Dθ +U ′sDϕ ⊗ cot22,

whereL2 is given by (2) and

U ′c = cos8Uc + sin8Us, U ′s = cos8Us − sin8Uc.

Since the components of these two matrices are given by

(U ′c) jk = (−1) j+k cos

(
ϕ j − ϕk

2

)
, (U ′s) jk = (−1) j+k+1sin

(
ϕ j − ϕk

2

)
,
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and the nodesϕ j are symmetrically located in [−π, π ],U ′c andU ′s are the product of a
permutation matrix byUc andUs, respectively. Therefore,L2 andL ′2 both yield the same
results when applied to vectors formed through tensor products of polynomials inθ andϕ
of degrees at most (K − 1)/2 and (M − 3)/2, respectively, evaluated at the nodes.

Now, we address the question of the form that the commutators of the components of
the angular momentum take in a finite-dimensional space. Let us takeN points on the axis
x,M on y, andK on z, to form the set of Cartesian nodes (xn, ym, zk), and the diagonal
matrices representing the variablesx, y, andz,

X = (1K ⊗ 1M ⊗ X),

Y = (1K ⊗ Y ⊗ 1N),

Z = (Z ⊗ 1M ⊗ 1N).

The main diagonals ofX,Y, andZ contain the sets of pointsxn, ym, andzk, respectively.
On account of (5), theN M K × N M K matrices

Dx = (1K ⊗ 1M ⊗ Dx),

Dy = (1K ⊗ Dy ⊗ 1N),

Dz = (Dz⊗ 1M ⊗ 1N),

are the representations of the partial derivatives∂/∂x, ∂/∂y, and∂/∂z in a polynomial
subspace. Thus, the matrix components of the angular momentum in Cartesian coordinates
(with -h= 1) become

L x = −i (YDz− ZDy),

L y = −i (ZDx − XDz), (36)

L z = −i (XDy − YDx).

By using (5), it is easy to see that the commutators of (36) are given by

[L x, L y] = i L z−Uz⊗ (Dy ⊗ X − Y ⊗ Dx),

[L y, L z] = i L x − (Dz⊗ Y − Z ⊗ Dy)⊗Ux, (37)

[L z, L x] = i L y − (Z ⊗Uy ⊗ Dx − Dz⊗Uy ⊗ X),

whereUα = PαOαP−1
α (the indexα stands forx, y, orz), Oα is a matrix of dimension equal

to the number of nodes in use and elements all equal to 1, andPα has the structure given in
(5). Oα is again a projection matrix and so isUα. To see this, let us consider a polynomial
f (x) of degree at mostN− 2 and construct a vectorF by evaluatingf (x) at thex-nodes.
Since the coefficient ofxN−1 of the Lagrange representation off (x)must vanish, anyf (x)
satisfies

N∑
l=1

f (xl )

p′(xl )
= 0,
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p(x)= ∏N
l=1(x − xl ) [cf. (5)], yielding(

Ox P−1
x F

)
j
= 0, j = 1, 2, . . . , N.

Thus,Ux projects a vector on the component corresponding toxN−1
α and therefore, (37) gives

the expected result if we multiply them by any vector of the subspace of tensor polynomials
of degree at mostN− 2 in x,M − 2 in y, andK − 2 in z.

ACKNOWLEDGMENT

The authors thank one of the referees of this paper for valuable comments that improved this work.

REFERENCES

1. M. Abramowitz and I. A. Stegun (Eds.),Handbook of Mathematical Functions(Dover, New York, 1972).

2. M. Bruschi, R. G. Campos, and E. Pace, On a method for computing eigenvalues and eigenfunctions of linear
differential operators,Nuovo Cimento B105, 131 (1990).

3. F. Calogero, Lagrangian interpolation and differentiation,Lett. Nuovo Cimento35, 273 (1982).

4. F. Calogero, Interpolation, differentiation and solution of eigenvalue problems for periodic functions,Lett.
Nuovo Cimento39, 305 (1984).

5. F. Calogero and E. Franco, Numerical tests of a novel technique to compute the eigenvalues of differential
operators,Nuovo Cimento B89, 161 (1985).

6. F. Calogero, Interpolation in multidimensions, a convenient finite-dimensional matrix representation of the
(partial) differential operators, and some applications,J. Math. Phys.34, 4704 (1993).

7. R. G. Campos and R. Mu˜noz B., On certain numerical technique to solve Sturm–Liouville systems (I),Rev.
Mex. F́ıs.36, 1 (1990).

8. R. G. Campos, Solving singular nonlinear two point boundary value problems,Bol. Soc. Mat. Mex.3, 279
(1997).

9. R. G. Campos and L. O. Pimentel, Quantum angular momentum in a finite linear space, submitted for
publication.

10. Y. P. Kravchenko, M. A. Liberman, and B. Johansson, Exact solution for a hydrogen atom in a magnetic field
of arbitrary strength,Phys. Rev. A54, 287 (1996).


	1. INTRODUCTION
	2. THE HYDROGEN ATOM
	TABLE I
	TABLE II

	3. THE FINE STRUCTURE SPLITTING
	TABLE III
	TABLE IV

	4. HYDROGEN ATOM IN A MAGNETIC FIELD
	TABLE V

	5. FINAL COMMENT
	APPENDIX
	ACKNOWLEDGMENT
	REFERENCES

