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A Galerkin-collocation-type technique for solving numerically differential bound-
ary value problems was developed several years ago. Such a method is based on
a certain finite-dimensional matrix representation of the derivatjdx obtained
through Lagrange’s interpolation. Recently, an extension to separable multivariate
problems has been given; in this context, the authors have found a matrix repre-
sentation of the quantum angular momentum, yielding the precise eigenvalues and
finite-dimensional vectors that coincide exactly with the spherical harmonics evalu-
ated at a certain set of points. The aim of this paper is to give additional properties
of such a matrix representation and to show how these findings can be applied to
obtain binding energies and eigenfunctions for the hydrogen atom. We consider
three cases: the Coulomb potential, the fine-structure splitting, and the hydrogen
atom in a uniform magnetic field. Since this last case is a nonseparable problem
in the coordinates, the method requires a modification that is introduced in this
paper. © 2000 Academic Press

Key Words:hydrogen atom; eigenvalue problem; angular momentum; numeric
partial differentiation; boundary value problems.

1. INTRODUCTION

Recently, the authors have found a finite-dimensional version of the eigenproblen
the quantum angular momentum that yields the exact eigenvalues and finite-dimens
vectors coinciding exactly with the spherical harmonics evaluated at a certain set of pc
[9]. The matrix associated to the square of the angular momehtafra system described
by three classical degrees of freedom is obtained by using a céttaitN (N odd) matrix
representing an angular derivative in the space of trigopnometric polynomials of degre
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most(N — 1)/2 which has the generic form

Dy = QD:Q Y,
i YN icottS i = j, o
(Dvij = Qij =q'(t)si.i,j=1,..., N, 1)

Laedli=t) 5
3CSC—1, 1 # |,

whereq'(t) is the derivative of the trigonometric polynomigdt) = T\ ; sin[(t — t,)/2],
and the set of nodesgis any set of different points of{r, = ]. Hereafter, a prime appended
to a sum sign excludes the divergent term.

The finite-dimensional representationlof is given by

L? = —[Dj + cot®Dy + sin"? ®D7], )
where
Dy = 1y ® Dy, DwZD(p@lK, O=1yR06. (3)

Here, 3y and Xk are identity matrices of dimensidvi andK, respectively; and, andD,,
are matrix representations of the derivatiggsld andd/de in the subspaceS andS, of
trigonometric polynomials of degrees at mast{ 1)/2 and M — 1)/2, respectively® is
a diagonal matrix with entrie@) jx = 0;é;x and the nodes; are restricted to be in [0r].
If M > K, the eigenvalue problem of (2),

LZYS = AsYs,

reproduces exactly the fird€ (4 1)?/4 eigenvalues and determines the corresponding spht
ical harmonicsy"(6, ¢) at the nodes{, ¢x), save for a constant factor, and ordered a

As=1(0+1),
where
s=12+14m+1, 1=01...,K-1/2, m=-l,...,1I
The componenty;s of ys are given by
Yrs = Cim P"(0))€™,
wherec, is a normalization constant and
r=j+k-DK, j=12....K, k=12...,M.

In order to have a positive semidefinite matti%, the g-nodes must be given by,=
—r+2rk/M, k=1,2,..., M, and theg-nodes must satisfy the condition

K
> cot @i = _ cot(d;). (4)
= 2

It is also possible to combinB,,, as given by (1), and the matrix representatior o6
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given in [4] into (3) to yield equivalent results [9]. The way in which the matrix (1) i
obtained is similar to the way in which the finite-dimensional matrix represent&tjon
of d/dx, which has been used to solve two-point boundary value problems [2, 5, 8], \
obtained. Such a matrix is given by

Dy = PDP L,
- ZI l(x‘—x|)’ :j’ , .
(Dy)ij = Pj=p'X)&j.i,j=212...,N. (5)
7X])’ #]’

Here, p(x) =TI}, (x — x), and the set of nodeg are chosen by imposing the condition

N o
Z/ 1 :_V(XJ), j:1,27~~-7Na (6)
— (Xj —X) v (X))

wherey (x) is a function defined by the boundary conditions and the differential equati
(see [7, 8]).

The purpose of this paper is to give an application of the finite-dimensional representa
of the angular momentum and the angular derivatives. We incorporate such matrice
the numerical technique used to solve multidimensional boundary value problems [6]
choose as trial examples the following eigenvalue problems: the hydrogen atom, the
structure splitting, and the hydrogen atom in a uniform magnetic field. Since the last
is a nonseparable problem in the coordinates for an intense field, i.e., the solution ca
be written as a (tensor) product of univariate functions, a modification of the method \
be introduced.

2. THE HYDROGEN ATOM

In this and in the next sections, the units of length and energy will be taken as
Bohr radiusag =h?/mee? = 5.3 x 10~2 cm and two times a Rydbemee*/h?=27.2 eV,
respectively.

To obtain an appropriate matrix form of the Satliriger equation for the electron in a
Coulomb field

1 90/,0 1., 1 B
aea (o) F a0 =BV o) @

it is necessary to extract frong (r, 6, ¢) the singular behavior at the endpoints of the
intervals (see [2, 7, 8]). This can be done in part through the change of variable

Y(r,0,0) = Yu(r,0,0) F(r, 0, 9), 8
wherey (1, 0, ¢) is the solution of (7) for bound states wher> oo, given by
Voolr. 0. ¢) = e7V2T. 9)

The unknown energy is written here as because it will be used in the numerical calcu:
lations as a trial parameter.
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The substitution of (8) and (9) in (7) yields

2 —
[_13__<}_@> 0 1 L2—(1 ‘/Z>—g} f(r,0,¢9)=Ef(r,0,¢). (10)

r ar ' 2r2 r

Since f (r, 8, ¢) can be written as a product of univariate functions,@f, andg, we can
project each of these functions on subspaces of polynomials to yield finite-dimensic
matrix representations of the partial derivatives [9]. Thus, to the projection of the angt
variables described above, we add the projection of the radial function on a subspac
polynomialsS depending om of degree at mosN — 1. This yields a tensor projection
spaceS=5, § ® S of dimensionN = MK N in which the matrix form of (10) is given

by
Hfs = Esfs, s=1,2,...,N, (11)

where the discretized Hamiltonian is given by

1 1
H =—§Dr2—(r’1—\/Zl)D, +§r*2|_2—(1—\/2_e)r*1—51. (12)

Here,D; is the tensor product
Dr =1y ® 1k ® Dy,

whereD; is the representation of the radial derivative having the structure of (5), the diagc
matrixr is defined by

r=1n ®1k ® R,

and the nonzero entries Bfare the radial nodes, j =1,2,..., N. L2is given by (2), and
1is the identity matrix of dimensioN. Since the part of (r, 6, ¢) depending om consists
of polynomials (Laguerre polynomials multiplied by a power p&nd the dimension dd,

is N, one would expect a set &f times(K + 1)?/4 eigenvector coinciding exactly with
the first eigenfunctions of the hydrogen atom evaluated at the nodes (pravideH).
However, due to the fact that the argument of the radial functions depends on the princ
guantum numbem, which is related to the index defining the degneeof certain Laguerre
polynomial and to the azimuthal quantum numbthroughn=n_ +1 + 1, the projection
of the radial part of (12) for the-states orf, i.e., the eigenvalue equation

Hofj=Ef, j=12...N,

with
1
Ho = —>Df = (R = v2:1y)Dr — (1= V2R — ely, (13)

will reproduce only one exact eigenvalue: the one corresponding to the case in wi
e =—E =1/(2n?) for somen < N. As a consequence, the number of exact energies yield
by (11) is given by the known formula

n—1
> @+1=nr%

1=0
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for somen < npay, provideds = 1/(2n?). SinceD; yields exact derivatives of polynomials of
degree at most —1 and the radial part of (r, 6, ¢) is a polynomial of degree—1=n, +1,
we have again that,,x= N, and therefore, the method yields the correct number of exe
eigenvalues corresponding to the multiplet definednbgrovidedn<N andM > K >
2N — 1. It is necessary, however, to choose the radial nodes in such a form that [7]

N

.1 1 _
> =v2e—=, j=1,2,...,N, (14)
=1 (rj—r|) I’j

in order to look for a well-behaved solutionra&= 0. Therefore these points coincide with
theN zeros of the Laguerre polynomihﬁ(ZJZr) and yield a positive definite matrix*

in (12) and a Hermitian matrik, (save for a similarity transformation). The first assertior
is obvious, and the latter can be shown by setting the main diagoilal apart by writing
Dr =PDP! +d,dj=(Dr)jj8jk, and using (14) to obtain

H =P %(—D2+dD— Dd+d2)+V] pl= P(%D;Dr +v) pL
whereV is the diagonal matrix
V=-1-v2)R ! —ely.
Therefore, the radial paH, of (12) also has real eigenvalues because

Hr=1M®1K®Hr-

However, because of the arbitrariness of theodes, some complex eigenvalues can b
found in the spectrum of (11). To exclude them we can fixsthedes through the condi-
tion (4) to give a positive semidefinite matili¥ (also save for a similarity transformation)
[9]. It is worth to be noticed that such similarity transformations are not essential for
eigenproblem like (11) since the similarity matrices can be collected iNtedN diagonal
matrix S to write (11) in the form

HHgs=Esgs, s=12,...,N, (15)

with HH Hermitian andgs = S~fs.

Summarizing, we have found a nonrectangular grid on wHiblecomes a Hermitian ma-
trix. Explicitly, if we choose the nodesi( 6, ¢x) insuchaformthatthessti =1, ..., N,
satisfies (14),theséf, j =1, ..., K, satisfies (4), angk = — 7 + 27k/M, k=1, ..., M,
the projection of the Schdinger equation o becomes Eq. (11), whek¢ is a Hermitian
matrix given by (12). The spectrum of this matrix contains necessarily the exact bi
ing energies of only one multiplet of the hydrogen atom, to, saynthgprovidedn < N
(N>2),M>K >2N — 1, ands = 1/(2n?). Since the matrices representing the partie
differential operators constructed with these nodes yield exact values for polynomial
the form

p(r)R™ @)%,

where p(r) is a polynomial of degree at moftl —1,1=0,1,...,(K—-1)/2, and
m=—I,...,1, the eigenfunctions of the multiplet divided Iay*/Zr [cf. (8)—(9)] are also
determined exactly at the nodes save for a constant factor.
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To do a numerical calculation it is necessary to choose first an inddefining thus
a multiplet and the parameter and then the number of radial and angular node,
andM according to the relations already given. In addition to the exact eigenvalues of
nth multiplet, one can find in the spectrum of (11) eigenvalues approximating the energ
other multiplets defined by different index&s# n, " < N. As expected, these eigenvalues
converge numerically to their exact values of the fikst(1) /2 multiplets M > K > 2N —1)
asN grows.

It is noticing the existence of zero and positive eigenvalues in the spectrum of (11)
fact, the number of nonnegative eigenvalues is greater than the number of negative «
but the numerical study of such eigenvalues is beyond the scope of this paper.

We show now some numerical results obtained through the diagonalization of (11)
standard double precision MATLAB functions using a personal computer. In Table | t
negative eigenvalues of (11) with =4 andK =M =7 are shown fon=1, 2, 3,4 (in
the last two cases only a part of them are displayed). In each column we find exact
approximated values for the binding energies of the hydrogen atom; the exact ones are

TABLE |
Negative Eigenvalues of Eq. (11) with H Given by (12) foN =4,
K=M=7,ande,=1/(2n?) with n=1,...,N

&

€2

€3

2

1.00000000000000
2.04388882694316
2.04388882694346
2.04388882694354
2.09804764737169

1.00215707302795
1.99999999999993
2.00000000000000
2.00000000000000
2.00000000000000
3.03156106874861
3.03156106874867
3.03156106874879
3.03156106874883
3.03156106874884
3.09880783441467
3.09880783441493
3.09880783441499
3.16392960609153
5.34059520750606
5.340569520750857
5.340569520750915
5.34059520750938
5.34059520750947
5.34059520750989
5.34059520751064

1.03168585750231
2.00129478110128
2.00129478110130
2.00129478110132
2.00543455491769
2.99999999999982
2.99999999999990
2.99999999999995
2.99999999999999
2.99999999999999
2.99999999999999
3.00000000000001
3.00000000000002
3.00000000000014
4.06329322772771
4.06329322772843
4.06329322772855
4.06329322772857
4.06329322772861
4.06329322772862
4.06329322772872
4.25955351771777
4.25955351771817
4.25955351771843
4.259556351771845
4.25955351771845
4.70250143548207
4.70250143548227
4.70250143548250

1.08896461090157
2.00555350797036
2.00555350797038
2.00555350797038
2.06096113941247
3.00051376536271
3.00051376536275
3.00051376536277
3.00051376536278
3.00051376536279
3.01040973704290
3.01040973704298
3.01040973704302
3.03184205479519
3.99999999999962
3.99999999999991
3.99999999999995
3.99999999999997
3.99999999999997
3.99999999999998
4.00000000000000
4.00000000000000
4.00000000000001
4.00000000000001
4.00000000000001
4.00000000000002
4.00000000000004
4.00000000000005
4.00000000000033
4.00000000000039

Note The two rightmost columns show only some of the eigenvalues. In each case,
the spectrum of (11) contains only one exact eigenvalue (counting the degeneracy) of
the hydrogen atom. In order to distinguish this exact energy (corresponding nththe
multiplet), the value 1/—2E; is displayed.
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TABLE Il

Convergence of Some Negative Eigenvalues of Eq. (11) with H Given by (12)
for K=M =7 and e = 1/2 to the Exact Energies of the First Three Multiplets

of the Hydrogen Atom (Displayed as 1,/—2E; = j, j=1, 2, 3) asN Grows

J

N=5

N =10

N =15

N=20

1

2

0.99999999999996

2.01049276733108
2.01049276733135
2.01049276733172
2.02305632906585

1.00000000000005

2.00000276409036
2.00000276409060
2.00000276409188
2.00000703530320

3.01884262920929
3.01884262920934
3.01884262920941
3.01884262921074
3.01884262921528
3.05122930639900
3.05122930639920
3.05122930640030
3.07657778934264

1.00000000000003

2.00000000023245
2.00000000023589
2.00000000023606
2.00000000063539

3.00022234719467
3.00022234720154
3.00022234720269
3.00022234720273
3.00022234720280
3.00072902585704
3.00072902585744
3.00072902585783
3.00117867702690

1.00000000000003

1.99999999999987
2.00000000000002
2.00000000000011
2.00000000000116

3.00000127729828
3.00000127729917
3.00000127729919
3.00000127730065
3.00000127730920
3.00000472833179
3.00000472833209
3.00000472833728
3.00000812988290

185

Note.Each column contains again one exact eigenvalue. Sirc#/2, the exact energy
corresponds to the first value in each column.

corresponding to the multiplet defined by the indein Table Il we show the convergence
of the approximated eigenvalues to their exact values wiegrows, maintainingn, K,
andM fixed (n=1, K=M=7). Sincen=1 (¢ =1/2), the first value of each column
corresponds to the exact eigenvalue of the first multiplet. The choidé fand M yields
convergence only for two other multiplets.

3. THE FINE STRUCTURE SPLITTING

We consider in this section the problem of a classical electron in a Coulomb field w
the inclusion of spin effects in order to show some additional facts of the finite-dimensic
representation of the angular momentum. We will apply our projection method to
Hamiltonian of this problem as it is given in the frame of perturbation theory and comp.
the eigenvalues of the discretized problem with the fine structure of the hydrogen aton

3.1. Total Angular Momentum

We begm by giving the finite-dimensional representatlon of the total angular mom
J =L+ S which, according to the introduced method, is thé 2 2N vector matrix
J=L®L+S®1, (16)
whereN = MK, L is theN x N vector matrix representing the angular momentum whos
square is given by (2), ar8i= 5 /2 is the intrinsic angular momentum of the electron, giver
as is well-known, in terms of the Pauli matriceg oy, ando,. By using the expressions
for Ly, Ly andL in terms ofé ande and their derivatives, the componentsLotan be
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TABLE 1lI
Eigenvalues); of (18) Following the Sequence\; =j(j + 1),
1/2<j<(K—1)/2,forK=M=3,5,7

K=3 K=5 K=17
0.50000000000000 (4)  0.50000000000000 (4) 0.50000000000000 (4)
1.50000000000000 (6)  1.50000000000000 (8)
1.50000000000002
1.50000000000011

2.49999999999997
2.49999999999999 (2)
2.50000000000000 (8)
2.50000000000001

Note.To distinguish them easily, the indgx= (—1+ /14 44;)/2 is dis-
played. The digit between parentheses indicates the number of equal repeated
eigenvalues.

written ag

Ly =i(sin® ® Dy + cos®D, @ cot®),
Ly = —i(cos® ® Dy — sin®D, ® cot®), a7
L,=-iD, ® 1.

Here, @ is the diagonal matrix with entriesbj;x = ¢;8;x. These components and their
commutators can also be given in Cartesian coordinates, as is shown in the Apper
Thus,J? takes the form

FP=R+X+7, (18)
where
=L RLx+5®1ly, Jy=LRLy+S§®1ly, J=LeL,+S5®I1.

The spectrum of (18) contains eigenvalues agreeing up to 15 digits with the exact va
iG4+1D,1=1/2,3/2, ... Imax— 1/2, Imax= (K — 1)/2, M > K (M andK odd numbers
andh = 1), as is shown in Table Ill for small values & = M. Note that the total num-
ber of states is given correctly. The eigenvalues that do not follow the seqiiepeel)
and the correct count disappear as the valuk ef M is increased. Thus, the projection
scheme described at the beginning of this paper yields finite-dimensional representa
of the quantum angular operators that also work quite well for spinor eigenproblems wt
the solution can be written in terms of products of trigopnometric polynomials by cert:
functions powered to half-integer numbers (the eigenspinor functiods ahd J2). For
other cases, the method requires one to take into account the behavior of the soll
at the singularities of the differential equation or a further modification for nonsepara
problems.

2 Actually, the sum of the squares of these expressions gives a matéxd(fferent fromL?2, as is shown in the
Appendix. Since the difference is essentially a projection matrix, the dimension of the linear space in which
use of(L")? yields exact results becomes smaller than the one corresponding to theLiis@laik difference can
be compensated by increasiig
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3.2. The Perturbed Hamiltonian

To compute the fine-structure splitting of the energy levels of the hydrogen atom we t

the nonrelativistic reduction of the Hamiltonian
Har = HO +a? ! I:~§—}(H(O)+1/r)2+ho (19)
23 2% P

obtained by perturbation theory. Here, the units used are those of the previous sec
h has been withdrawn frorh and §, anda = €?/(ho) is the fine-structure constant. The
unperturbed Hamiltoniarhig% is the one given in (7), antdp is the Darwin interaction.
The standard procedure computes the corrections to the energy levels by finding the rr
elements of the perturbed Hamiltonian (19) in the basis of the mutually commuting opera
L2, %, J2, andJ,. We will find them instead through the projection of (19) in a polynomiz
space and the diagonalization of its finite-dimensional matrix representation obtaine
this way.

The first point to address is the explicit form of the Darwin interaction to be projecte
The singular and non-Hermitian term

19
42 9r
is usually converted to the Hermitian fora(1/8)V2(1/r) = (/2)8 (7 ) through an integra-
tion by parts. In order to give a finite-dimensional matrix representation of (19), we nee
find, in particular, the discrete form of this Darwin term. Due to the difficulty of a numeric
treatment of the delta function we find it more convenient to treat the non-Hermitian Dan
term (20) because it is easy to get the corresponding matrix form of (20), and numel
evidence shows that such a matrix has real eigenvalues when the radial nodes satisfie:
Therefore, we will maintain (20) in (19) instead of the usual foril,/8)V2(1/r).

On the other hand, the addition of the spin—orbit interaction introduces an irregt
singularity atr =0, making it necessary to look for a change of variable that incorporat
this behavior in the solution instead of (9). However, because of the smallnedswé
can keep the zeros d)j(,\})(Z«/Z_sr) as the set of radial points even though this choice me
give a lower convergence rate for the eigenvalues of (19) since it does not take properly
account the irregular singularity at the origin.

Thus, the change of variable (8) yields a new differential operator whose matrix form

hp = — (20)

2
L 1
H = Ho + % r3L-S— (Ho+r 1) — SI 20 = V2e) (21)

whereHp =1, ® H, H given by (12) r=~Lym ® R, Dy =1nm ® Dy, 1is the identity
matrix of dimension &, andL - Sis given by

2L'Szax®Lx+0y®Ly+az®Lz.

The lastterm of (21) is the form that the Darwin interaction takes after the change of varie
(8). For numerical reasons and in order to identify the dependence of the eigenvalues o
guantum numbers, |, andj, we find it more convenient to diagonalize the one-dimension
reduced version of (21)

2
1
H = Ho + “7 AR = (Ho+ R™)? = SR(Dr - V2sly) (22)
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TABLE IV

Fine Structure of the Hydrogen Atom

(n.1,5)

—Enlj

)

'nlj

100
—F i

— EB800

'nlj

(1,0,1/2)

(2,0,1/2)
(2,1,1/2)
(2,1,3/2)

(3,0,1/2)
(3,1,1/2)
(3,1,3/2)
(3,2,3/2)
(3,2,5/2)

0.50000665991795

0.12500208122436
0.12500208122436
0.12500041624487

0.05555629554644
0.05555629554644
0.05555580221918
0.05555580221918
0.05555563777676

0.50000613488955

0.12500195038954
0.12500208132882
0.12500041624486

0.05555623744838
0.05555629557858
0.05555580221948
0.05555580222221
0.05555563777706

0.50000639259060

0.12500201493321
0.12500208132927
0.12500041624487

0.05555626615153
0.05555629557882
0.05555580221949
0.05555580222221
0.05555563777706

0.50000662026219

0.12500207221205
0.12500208132965
0.12500041624488

0.05555629166215
0.05555629557903
0.05555580221949
0.05555580222221
0.05555563777706

Note.The exact binding energieskE,; of the Hamiltonian (19) are compared with those obtained
by the present methoe;E., for N =50, 100, 800.

nlj?

whereHy = H, +1( +1)R™2/2, H, is given by (13) and s, take the valué/2if j =1 +
1/2 or—(+1)/2if j=I1 — 1/2, respectively. We display in Table IV the fine structure
obtained by the diagonalization of (22) for the first three valuas éfgain, we have used
standard MATLAB functions and a personal computer to do the computations. Since
irregular singularity of the Hamiltonian has not been taken properly into account and
Darwin term leads to numerical difficulties, it is necessary to take large valubls aé
shown in Table IV, to attain an agreement of the approximated eigenvalﬁéﬁ with
the exacs-states within 8-9 digits (2—3 significant digits of the fine-structure correction
the Bohr energy levels), whereas fog 0, the first 10-14 digits of the exact eigenvalue:
of the Hamiltonian (19) are attained for the first valueNo{4—7 significant digits of the
fine-structure correction), indicating that the matrix representation of the Darwin term,
expected, does not influence the states With0. However, these eigenvalues do not shov
convergence to the exact energief\agrows. This is due to the fact that the factorizatior
(8)—(9) does not take into account properly the behavior of the wave function at infin
even though it seems to work fge,»-states.

4. HYDROGEN ATOM IN A MAGNETIC FIELD

Letus consider the problem of a single electron bound by an atomic nucleus and a unif
magnetic field of intensityd pointing in thez-direction. By using the same units as before
andBy =mZe3c/h® =235 x 10° G as the unit of magnetic intensity such tiat 8By (B
is the dimensionless magnetic field) and the gauge wheee Ay =0, A, = (Br sin6)/2
in spherical coordinates, the Solifiger equation takes the form

.0 1 , 2
—V2—i— + Zpu?sifd — = — |V = 2EV, (23)
op 4 r
where the spin of the electron is antialigned with the magnetic field in order to compute
ground state.
According to the present method we need to know the limit fdrgr, 6, ) of W for

bound states [cf. (8)]. To this, we writeE ase and take the limit form of this equation as
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r — oo (assuming that the angular derivatives of the wave function are well-defined for
values of the angles) and obtain

92 . 8 1

o2 +|ﬁ£ - Zﬁzrzsinze—kﬁ Voo = 26Wy.

The p-dependence of this equation can be factored to yield

W (r,0,¢9) = (3/4+a)U(a x)em, (24)
where
2 —p(Ll-m _ .
a_w, X =+/Bsinor (25)

are the arguments of the Weber parabolic functiqia, x) (see [1]). The gamma function
appearing in (24) is a normalization factor which makes independent of atr =0.

Since our interest is to compute the ground energies, we fakd) and substitute
Y=y, fin (23)toyield

1 1/u u 2(u
(frr +2&fr> +—2<f99+2ﬁf9> + {—2<ﬁ+cot9—9> +_(_r+1) +28:|f
y r y r2\ u u r\u

1 .
+mf¢¢+|ﬂf¢ = —2Ef, (26)

where we have defined
y(r,0) =r+/sinf u(r, 6) 27)

andu(r, 9) =T'(3/4+ a)U (a, x), a andx given in (25) withm =0.

We assume now thdt(r, 6, ¢) can be approximated by a function of the fagin, 6)h(p),
whereh is a (trigonometric) polynomial ip andg is a polynomial in two variables (in-
deed, f has such a form fog =0). This assumption allows us to project the part of (26
corresponding to the-coordinate according to the lines already discussed. Besides, si
g(r, 0) yieldsN different trigonometric polynomials é'\whenr =r;, j =1,2,..., N,and
K different polynomials ir whené =6, k=1, 2, ..., K, and the representation of the
partial derivatives are given by blocks, we can demand th&tthiglock of the matrix repre-
sentingd/ar (in two variables) be constructed with thih line of nodeslk, =12...,N
according to the generic formula (5) and, similarly, that gtte(sparse) block of the matrix
representing/ a6 be constructed with the line of nodgs k=1, 2, ..., K according to the
generic formula (1). Let us denote thésél x K N matrices byD(® andDéz’, respectively.
Therefore, the representationdfor, a/96, andd/d¢ in (26) is given by

D=1y®D?, Dy=1u®D{?, D,=D,® ln. (28)
The representation of a coefficient function in (26) becomes the tensor prodygtvati

the KN x KN diagonal matrix whose nonzero elements are the given function evalua
at the nodesrjk, 6),i=12...,N,k=1,2,..., K, with j running faster thak.
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Thus, the discrete form of (26) is

[(D? + 29Dy ) +r~2(Dj 4 295Dy ) + 1 *(Ugs + COtOUy) + 2r (U + 1) + 261
+cD? +iBD, |f = —2Ef, (29)

wheree is taken as a trial parametdf;andf are expected to be approximants to the exac
energy and eigenfunctionB (the latter divided by, and evaluated at the node§);,
Dy, andD, are given in (28);L is the MK N x MK N identity matrix; andg;, r, gs, Ugg,
cot ©, ug, Uy, andc are the diagonal matrices corresponding to the functions [cf. (27
Yi /¥, T, vo/v, Uge/U, COLO, Ug/u, U; /u, and J(r?sir? 0), respectively. The nodes in the
@-coordinate can be chosen to be the equidistant points

l=1,2,..., M, (30)

in order to yield a similarity-transformed Hermitian matrix fidd, (see [9]), so that it
remains to say how to choose the set of nodés@(j). To this end, we follow the ideas
given in [2]. Let us denote bgt; andd, the diagonal entries @, , andDy, respectively. If
we impose the condition

dr = -0, do = —0p, (31

then—D? — 29, D, and—DZ — 2gyDy are positive semidefinite matrices (save for a simi
larity transformation) and therefore, the eigenvalues of (29) are real. Written in detail, (
becomes the system oK2N nonlinear equations

(32)

wherej=1,2,...,N,k=1,2,...,K andy(r, 0) is given by (27). Thus, i ande are
given, the set of nodes!(, 6,) can be found by solving (32).

Therefore, once we have determined the equations for the nodes, we can proceed to
the eigenproblem (29). To obtain an eigenvalue of (29) for a given y&laEparametep,
we follow a recursive procedure on the paramegesinds consisting in the following steps.
We begin with the nodes yielding exact resultsfee 0 ands = 1/2. These nodes are used
as initial points to solve (32) witl$ equal to some small increment. The new nodes ar
used to construct and solve (29), obtaining a ground eigenvalue used as a ainehaf
next calculation. We increment agatrand use the last set of nodes as initial points to fin
a new set of nodes through (32) with the actual valueg ahdes. Solving again (29), we
find a newe, and so on. We stop the procedure wigea g’, yielding thus an eigenvalue for
the ground state. Now we change the incremerg ahd the procedure is restarted. After
several trials we search for the stabilized digits in the eigenvalues obtained in this way
order to increase a bit the accuracy of results and admit even nuiiberse can use the
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TABLE V
Binding Energies —Eq(M, K, N) of the Ground State of a Hydrogen Atom in
a Uniform Magnetic Field Computed According to the Present Method

8 —Ey(3,4,4) —Eo(3,6,6) ~Ey(3,8,8) —E,

0.0001  0.500 049 997 500 0.500 049 997 500 0.500 049 997 500 0.500 049 997 500
0.001  0.500 499 750 00  0.500 499 750 000 0.500 499 750 000 0.500 499 750 000

0.01 0.504 961 0.504 975 0.504 975 0.504 975 002 759
0.1 0.547 518 0.547 527 0.547 525 0.547 526 480 401
0.4 0.664 7 0.664 7 0.664 6 0.664 605 379 868
0.6 0.727 0.727 7 0.727 3 0.727 462 287 757
0.8 0.78 0.782 0.782 0.782 283 393 769
1.0 0.83 0.83 0.83 0.831 168 896 733

Note.Only the first stable digits obtained through the recursive procedure described in Section 4
are shown. They are compared with the energi€g given in [10].

matrix representation af/deo,

Do = SDS L,
_ S\ K cot@ — o), i = . K
Dij = o §j = djj Hsm(@,— —6),
cotd —0j),1 # |, 1]

givenin[4]. In such a casdDgZ) will change accordingly [so does (28)] and the summan

of the second equation in (32) will change to c&jt(— 9,'). This is what we do to compute
the ground energies shown in Table V fdr=4, 6, 8; K = N; and M = 3. These values
are compared with those given in [10]; only the stable digits obtained through our recur
procedure (described above) are shown. As can be seen, the present method yields acce
results only for smal. This is due to the fact that (24) becomes an oscillatory functic
whena < 0 [or B8 > 2¢; cf. Eq. (25)], producing that the solution of (32) cannot be foun
with high precision forg ~ 1. For 8 > 1, the solution of (32) is not unique, so anothel
function ¥, should be chosen.

We end this section by noting that this problem can also be solved numerically in t
variables { and®) if we just ignore the dependence of the wave function on the coordin:
¢. However, we have preferred to show the results obtained by using three coordin
instead of only two in order to give a complete humerical treatment of this problem, e
though numerical calculations in two variables yield the same results.

5. FINAL COMMENT

As we have shown, the method introduced in this paper can be easily implementec
eigenproblems whose solution can be expressed in terms of products of polynomials, y
ing accurate eigenvalues and eigenfunctions (obtained from the eigenvectors throuc
interpolation) for small values of the number of nodes used to construct the matrix re
sentations of the partial derivatives. However, this technique depends strongly on the cc
choice of the boundary function that defines the nodes, and so the selection of this f
tion becomes crucial in order to attain convergence to exact solutions of more complic
problems. The modification of the procedure introduced in the preceding section yie
acceptable results only for mildly nonseparable problems.
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APPENDIX

We show here the form that the algebra of the angular momentum takes in a fin
dimensional linear space and explain why the sum of the squares of (17) becomes diffe
from (2). We will see that such a difference appears as an intrinsic characteristic of
projection of the angular operators on a finite-dimensional space.

We begin by computing the commutatoi3,|, sin®] and [D,,, cos®]. Using standard
trigonometric relations, we get that

D, sin® = sin®D,, 4 cos® — U, (33)
and
D, cos® = cos®D,, — sin® + Us, (34)

whereU. andUs are projection matrices defined by
(Uo)jk = (=¥ cos(@) (Us)jic = (~1)**sin (—g”i ;”"k).

These matrices can be joined to form the complex matrix U, + iU, which projects a
trigonometric polynomial

m
fm(@) = > €'’ mM<Mpa=(M-1)/2,

|=—m

on the components of higher degmgax To make this clear, let us take the polynomials
cosefm(e), singfm(p), and calculate their derivatives by usifly. Since the use oD,
yields exact results at the nodes for polynomials of degree atmggst the formulae

D, sin®Fy, = sin® D, Fy, 4+ cos® Fy, D, cos®Fy = cos®D, Fyy — sin®Fy,

must hold whenevemn < mma— 1. Here,Fy, is the vector of values ofy,(¢j). Therefore,
comparing these expressions with (33) and (34), we see that our assertiobdbotaivs.
We calculate now the suinZ + L. According to (17), we find that

—(LZ +L%) = D} + (cos®D, sin® — sin®D,, cos®) ® cot®Dy
+ (cos®D,, cos® + sin®D,, sin®) D, ® cof ®. (35)

With L'?=L% +L§ + L7, the substitution of (33) and (34) in (35) gives
~L?=-L%-U.®cot®D, + U.D, ® cof @,
whereL ? is given by (2) and
U/ = cos®U. + sin®Us, U. = cosdUs — sin®U..

Since the components of these two matrices are given by

Uk = (=D cos(—")j 5 "k), (U9 = (—1)i+k+1sin(L . ‘”k),
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and the nodeg; are symmetrically located iz, 7], U, andU; are the product of a
permutation matrix byJ. andUs, respectively. Thereforé,? andL "2 both yield the same
results when applied to vectors formed through tensor products of polynomiabnidy
of degrees at mos&(—1)/2 and M — 3)/2, respectively, evaluated at the nodes.

Now, we address the question of the form that the commutators of the component
the angular momentum take in a finite-dimensional space. Let us\tgdants on the axis
X, M ony, andK onz, to form the set of Cartesian nodes,(ym, z), and the diagonal
matrices representing the variablesy, andz,

X =(1k ® 1y ® X),
=1k ®Y® 1Ly,
Z=(ZQ 1y ® 1y).

The main diagonals oX, Y, andZ contain the sets of points,, Y, andz, respectively.
On account of (5), th&l MK x N MK matrices

Dx = (1k ® 1m ® Dy),
Dy = (1k ® Dy ® 1n),
D; = (D;® 1y ® 1n),

are the representations of the partial derivatiogsx, 9/dy, andd/dz in a polynomial
subspace. Thus, the matrix components of the angular momentum in Cartesian coordi
(with h=1) become

LX = _l(YDZ_ZDy),
L, = —i (ZDy — XD,), (36)
L, = —i (XD, — YD,).

By using (5), it is easy to see that the commutators of (36) are given by

[Lx,Ly] =|LZ_UZ®(Dy®X_Y®DX)1
[Ly,L] =iLx—(D;®Y — Z® Dy) ® Uy, (37)
[LyLy] = ily — (Z®Uy ® Dy — D, ® Uy ® X),

whereU, =P, 0O, P;l (the indexx stands fok, y, orz), O, is a matrix of dimension equal
to the number of nodes in use and elements all equal to 1RPahds the structure given in
(5). O, is again a projection matrix and solik. To see this, let us consider a polynomial
f (x) of degree at modll — 2 and construct a vectdr by evaluatingf (x) at thex-nodes.
Since the coefficient ofN~! of the Lagrange representation bfx) must vanish, anyf (x)
satisfies

XN: foq)
p(x) 0

=1
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p(x) = [T1L1(x — x) [cf. (5)], yielding

(OxP*F), =0.j=1.2.....N.

Thus,Uy projects a vector on the component corresponding'td and therefore, (37) gives
the expected result if we multiply them by any vector of the subspace of tensor polynom
of degree at modtl —2 inx, M —2iny,andK —2inz.
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